Microsystems for electromechanical stimulations to engineered cardiac tissues
نویسندگان
چکیده
منابع مشابه
Traction force microscopy of engineered cardiac tissues
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we i...
متن کاملMicromolded gelatin hydrogels for extended culture of engineered cardiac tissues.
Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrog...
متن کاملBiomaterials to prevascularize engineered tissues.
Tissue engineering promises to restore tissue and organ function following injury or failure by creating functional and transplantable artificial tissues. The development of artificial tissues with dimensions that exceed the diffusion limit (1-2 mm) will require nutrients and oxygen to be delivered via perfusion (or convection) rather than diffusion alone. One strategy of perfusion is to prevas...
متن کاملMicrosystems for biomimetic stimulation of cardiac cells.
The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative...
متن کاملNuclear morphology and deformation in engineered cardiac myocytes and tissues.
Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microphysiological Systems
سال: 2018
ISSN: 2616-275X
DOI: 10.21037/mps.2018.11.01